Triacylglycerol Analysis of Potential Margarine Base Stocks by High-Performance Liquid Chromatography with Atmospheric Pressure Chemical Ionization Mass Spectrometry and Flame Ionization Detection

W. Craig Byrdwell,† William E. Neff,*,‡ and Gary R. List‡

Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, and National Center for Agricultural Utilization Research, U.S. Department of Agriculture, 1815 North University Street, Peoria, Illinois 61604

Several margarine base stock candidates have previously been prepared for the purpose of finding better, more oxidatively stable food components: high-saturate vegetable oils, randomized vegetable oils, vegetable oil—hard stock blends, and interesterified vegetable oil—hard stock blends. Here are reported the triacylglycerol compositions of these products, determined using reverse-phase high-performance liquid chromatography (HPLC) coupled with a flame ionization detector or a quadrupole mass spectrometer with an atmospheric pressure chemical ionization source. Triacylglycerol percent composition results for samples of known composition (randomized and interesterified samples) exhibited less average error by HPLC coupled with a quadrupole mass spectrometer with an atmospheric pressure chemical ionization source, after application of response factors, than the results by HPLC coupled with a flame ionization detector. The fatty acid compositions calculated from the mass spectrometric data exhibited less average error than the fatty acid compositions resulting from the flame ionization detector data. The average error of the fatty acid compositions by the mass spectrometer was lowest for interesterified blend samples, next lowest for randomized samples, then followed by high-saturated fatty acid oils, normal oils, and blends. Analysis of the vegetable oil—hard stock blends by mass spectrometer required special treatment for calculation of response factors.

Keywords: Atmospheric pressure chemical ionization mass spectrometry; flame ionization detector; margarine base stocks; triacylglycerol analysis; triglyceride; triacylglycerol

INTRODUCTION

The triacylglycerol (TAG) fraction of a margarine or shortening, called the base stock, is responsible for most of a product's physical properties, from texture to taste. Research has been directed toward improvement, through plant genetic manipulation, of the functional properties of vegetable oils (1–9), which may then be used as base stocks or components in base stocks (10, 11). Improvements have been accomplished by alteration of the fatty acid (FA) composition and TAG composition, resulting in oils with wide-ranging compositions. Alternatively, base stocks have been prepared from either the randomization of a single oil, the blending of a traditional vegetable oil with hard stocks (TAG mixtures containing mostly trisaturates), or the interesterification of the vegetable oil with hard stocks blend. Vegetable oil blends with hard stocks produce TAG mixtures that exhibit more solids at higher temperatures and are less susceptible to oxidative degradation (12, 13) than normal vegetable oil. Interesterification after blending, which may be chemically (14) or enzymatically (15) catalyzed, changes the TAG composition even further to provide improved food components (16, 17).

* Author to whom correspondence should be addressed [telephone (309) 685-4011; fax (309) 681-6340; e-mail neffwe@mail.ncaur.usda.gov].
† Florida Atlantic University.
‡ U.S. Department of Agriculture.